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1: Introduction 

As the most advanced gravitational wave detectors in the world, the Laser 

Interferometer Gravitational-Wave Observatories (LIGO) measure the curvature of space-time 

to incredible precision. In addition to gravitational waves, LIGO will also detect various noises 

at different frequencies. Those noises may have significant impacts on gravitational wave 

detection. With the help of the Python modules, we can discover further information hidden in 

the noises. This paper attempts to uses the real data published from Gravitational Wave Open 

Science Center (GWOSC) [1] and measure human activities through LIGO noises. 

2: Background 

2.1 Gravitational Waves 

Gravitational waves are “ripples” in space-time. Imagine disturbing the surface of water 

in the center of a pond, we can create water waves that travel outwards. General Relativity 

states that massive objects that accelerate in a certain way will disrupt the space-time, creating 

gravitational waves that travel at the speed of light. As a gravitational wave passes an observer, 

that observer will find spacetime distorted by the effects of strain. Distances between objects 

increase and decrease rhythmically as the wave passes, at a frequency equal to that of the 



wave.[2] Common examples that produce gravitational waves are the merger of two black 

holes, the inspiral of two neutron stars, or the highspeed rotation of a single neutron star with 

uneven mass distribution. Gravitational waves transport energy as gravitational radiation, a 

form of radiant energy similar to electromagnetic radiation.[3] 

2.3 Detection 

When two black holes orbit around each other and eventually merge, they can lose mass 

equal to several solar masses and release that mass into extremely powerful energy in the form 

of gravitational waves. But because some black holes are so far away from us, when the waves 

reach the Earth, they have a very small amplitude. The curvature of space-time may be 

approximately 10-21meter. meaning that an extremely sensitive detector is needed, and other 

sources of noises can overwhelm the signal.[4] Gravitational-Wave detectors must be able to 

detect the strain thousands of times less than the diameter of an atom. A very small error or 

noise on this scale would have a very large impact on the detection of gravitational waves. 

2.3 LIGO 

A Michelson interferometer can measure the change in space-time on a small scale. As 

Fig. 1 shows, there is a half-silvered mirror inside the structure. It can reflect half of the light 

rays and the other half can pass through the mirror. Two light rays will combine after being 

reflected by other mirrors at the end of the tubes. When two waves with the same frequency 

combine, the phase difference between two waves will determine the interference intensity 

pattern. Two waves with the inverse phase will undergo destructive interference. This leads to 

the result that the detector will not be able to measure any energy from the light waves. On the 

other hand, when two waves are not perfectly out of phase, the energy measured by the detector  



FIG. 1: The internal structure of a Michelson interferometer. 

will not be perfectly zero. A passing gravitational wave will alternately stretch one arm and 

squeeze the other and this minor change will lead to the difference in intensity pattern and thus 

be measured by the detector. LIGO detectors are Michelson interferometers with 4-km long 

arms. Scientists have created a pipe structure that can reflect light many times. The laser can 

travel thousands of kilometers in the pipeline. Which makes it easier to detect smaller 

spatiotemporal changes. 

2.4 Noises 

However, the distortion of space-time can be thousands of times less than the diameter 

of an atom. In this scale, tiny noises will influence the detection of gravitational waves. Some 

examples of noise sources are Seismic noise due to the motion of the mirrors from ground 

vibrations, earthquakes, wind, ocean waves, and human activities.[5] For further details about 

the noise, see reference 4. 

2.5 Anthropogenic noise 

Anthropogenic means relating to, or resulting from the influence of human beings on 

nature.[6]Anthropogenic noise means the noise caused by human beings. For example, cars 

moving on the roads may cause ground vibration. This vibration is so small that humans can 



hardly notice. However, it may be significant to gravitational waves detectors because of their 

ultra sensitivity. Generally speaking, there are three different anthropogenic noise frequency 

ranges.[7]They are far anthropogenic noise with the frequency between 1-3 Hz; anthropogenic 

noise in 3-10 Hz and close anthropogenic noise between 10-100 Hz. The following part of the 

paper mainly focuses on anthropogenic noise between 3-10 Hz. I will analyze the differences 

in human noise during a different period throughout the whole day. 

 

3: Method 

3.1 Choosing the Data 

The purpose of this paper is to analyze human noise through LIGO data. As LIGO’s 

primary goal is to find and analyze gravitational waves, some people may consider noises as 

“waste” or useless information. However, a deep understanding of noises can help us better 

analyze the information under the cover of noises. For example, scientists in LIGO have built 

active noise monitors. They can measure noises around LIGO and cancel them. What’s more, 

due to LIGO’s incredible sensitivity, we may be able to find the connection between human 

activities and noise amplitude. In this paper, the overall assumption is LIGO’s noise level will 

go up as human activities increase. The following steps are my method to find out whether this 

hypothesis is correct. 

The first step is to download the data from GWOSC. GWOSC provides real 

gravitational waves data from 2005 to 2007. I use the data in S5 from November 4, 2005, to 

October 1, 2007, because in recent years, LIGO has been adapted with active noise monitors. 

These monitors measure the noises in various frequencies and cancel them. Some noise 

information is therefore not included in the original data. GWOSC provides LIGO strain data 

from both observatories in Hanford and Livingston. They are L1, H1, H2 in the strain data lists. 



I choose the data from L1 but I believed all locations are suitable for this research. All data are 

formatted into 4096s segments. They are formatted into the HDF5 file. With the readligo.py 

module in the website module, I decode the strain data file and process the data in Python. 

Another thing is that scientists label the data with GPS time, so I also convert the GPS time 

into the local time while downloading data. As LIGO observatories do not always function 24 

hours every day, in one HDF5 file, sometimes 4096s of data is not full. To download the fully 

available data, I choose the data file with 100 percent quality.  I put the strain data into two 

groups. The first group of data is from 2:00 a.m.-4:00 a.m. each day. During this period, there 

are only a few human activities and noise intensity variations are small. While the second group 

of data is from 8:00 a.m. -10:00 a.m. with more human activities and noise variations. 

3.2 Data Processing 

Python can read LIGO data in the HDF5 file and analyze it with the help of a module 

from GWOSC. One basic way to show human noise is through amplitude spectral density 

(ASD). As Fig 2 shows, an ASD graph measures the noise amplitude of different frequencies.  

To measure the anthropogenic noise between 3-10 Hz, I modified the Lots of Plots Python 

script from 

Fig 2 A sample of amplitude spectral density graph 



Fig 3 The ASD graphs on a weekday(left) and weekend(right) 

GWOSC.[8]Besides the ASD graph, Lots of Plots module also plots some other graph like the 

spectrograms, in this research, I delete other graphs and keep the ASD graph in the module.  

At first, I added 30 different strain data into this module to plot the ASD graph and compare 

the ASD between range 3-10 Hz for 30 times. However, I found no obvious noise differences 

between mornings and nights.  As Fig 3 shows, the graph on the left is an ASD graph of a 

weekday morning. While the one on the right is an ASD graph of a weekend morning. It is true 

that in Fig 3, the noise amplitude on weekdays is higher than that on weekends. But among 30 

different strain data I selected, some weekend mornings will have greater noise than workday 

mornings. The reason for this is that the Lots of Plots module only uses the first 16 seconds of 

data and process them. However, there are 4096 seconds of data in total in one HDF5 file, thus 

using only the first 16 seconds of data may not be enough to illustrate the average noise of 

different frequencies. 

To maximumly use all the information in an HDF5 file. In this research, I cut the 4096 

seconds data into different 100-second period segments. For each segment, I first compute 

different amplitudes between 3-10 Hz. Then I add all these values together and divide them by 

the number of frequencies. In this case, there are 8 different frequencies between 3-10 Hz.  

After I get the average amplitude of each segment, I put all the average values on 4096 seconds  

 



timeline. As Fig 4 shows, this graph indicates the noise level at different times. I also add the 

error bars in the graph to show the amplitude variations. In the mornings, people will get up 

and go to work. For example, they may drive to offices and therefore the variations of noises 

will be more significant than that of midnight. As Fig 5 shows, the length of the error bars is 

the standard deviation among all the values within a segment. I’ve attached the complete 

Python script at the end of this paper. 

Fig 4 The graph of average amplitudes over different times. 

Fig 5 The graph of average amplitudes over different times with error bars. 

 



Fig 6 The graph of average amplitudes versus times at 2 a.m. on Nov 18, 2005(left) and the 

graph of average amplitudes versus times at 8 a.m. on Nov 18, 2005(right) 

4: Result  

As Fig 6 shows. The graph on the left side shows the average amplitude at 2 a.m. on 

Nov 18, 2005. The average amplitudes remain basically constant within 4096 seconds. The 

lengths of different error bars are also approximately the same. However, the graph on the right 

side shows the average amplitude at 8 a.m. on Nov 18, 2005. When the average amplitudes 

have more significant changes over 4096 seconds and the lengths of error bars have more 

variations. What’s more, the average amplitudes are all above 3×10-19. But the average 

amplitudes in the midnight are all below 2.5×10-19.  

I also ran several different groups of data of midnights and mornings. The results are 

the same. This result proves that in the mornings people have more activities, therefore, the 

amplitudes of the noise and the change of noises are more significant than midnight. Also, I 

ran the HDF5 data on weekends morning. Fig 7 is the amplitudes graph at 7 a.m., Nov 20, 

2005(Sunday).  On the day, most people do not go to work in the morning. Therefore, people 

may cause less anthropogenic noise. As Fig 7 shows, the average amplitudes remain basically 

constant within 4096 seconds.                                                                                                                                                                                                                



Fig 5 The graph of average amplitudes versus times at 7 a.m. on Nov 20, 2005 

Fig 8 The graph of average amplitudes versus times at 9 a.m. on January 18, 2006 (left), and 

the same graph focuses on 2200-2600 seconds. The peak was on 10:10 

Fig 9 The graph of average amplitudes versus times at 9 a.m. on January 11, 2006. The peak 

was on 10:11  

I have processed about 60 different HDF5 files in this research. I accidentally plotted 

one very special graph. As Fig 8 shows, there is a very special peak around 2300 seconds. As 

the right graph of Fig 8 shows, I modified my script to “zoom” into the time range between 



2200-2600 seconds. I believe the significant growth of amplitude is due to a train passing at 

that moment. I checked the map and found that there is a train track only 5 km away from 

Hanford observatory. To prove my hypothesis, I processed the data at exactly the same time 

on the previous Wednesday. Surprisingly, as Fig 9 shows, there was a peak that appeared 

perfectly at the same time. When I tried to find more Wednesday morning data. I found that on 

the GWOSC website, most HDF5 data on Wednesday around 10 a.m. does not have 100% 

quality. It seemed like the detector was shut down shortly because scientists noticed that there 

would be a train passes by at this time. 

 

5: Further Investigations 

In this research, I assumed that all noises in 3-10 Hz are anthropogenic noise. However, 

there are more noises within that frequency range.[7] Further investigations can focus on how 

to isolate the anthropogenic noise from 3-10 Hz. Besides, the Python module I used in the 

research has one serious flaw. It spends about 5 minutes to process simply one HDF5 data file. 

It takes long time until the module finished processing one data file. Then it needs to be 

switched to a different data file to process again. To process 30 different data files more 

efficiently, it is better to create a workflow and let the computer work automatically. 

6: Summary 

This paper measures human activities with LIGO data. With LIGO’s super sensitivity, 

we can see due to active human activities, in the morning, the noises between 3-10 Hz are 

louder and have more variations than the midnight. Besides, even if a train passes from several 

kilometers away, it will have a significant influence on the LIGO data. 
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Appendix 

#Plot the average ASD of different time segments 

#Plot error bars to show the amplitude variations at different times 

# Harry Yu 1458177760@qq.com July 29, 2020 

  

#---------------------- 

# Import needed modules 

#---------------------- 

import numpy as np 

import h5py 

import matplotlib.pyplot as plt 

import matplotlib.mlab as mlab 

import readligo as rl 

 

#--------------------- 

# Read in strain data 

#--------------------- 

fileName = 'H-H2_LOSC_4_V1-821030912-4096.hdf5' #The file name 

strain, time, channel_dict = rl.loaddata(fileName, 'H2') 

ts = time[1] - time[0] #-- Time between samples 

fs = int(1.0 / ts)          #-- Sampling frequency 

 

 

segList = rl.dq_channel_to_seglist(channel_dict['DEFAULT'], fs) 

length = 4096 # seconds 

strain_seg = strain[segList[0]][0:(length*fs)] 

time_seg = time[segList[0]][0:(length*fs)] 

#----------------------------- 

#You can modify the frequency range, interval time and overall time range here 

f_low = 3.0 

f_high = 10.0        

chunk_size=200 # interval time, in seconds 

t=0 

t_max=4096 

#------------------------------------------- 

mailto:1458177760@qq.com


asds= [] 

times= [] 

asd_var=[] 

 

while t < t_max: 

    time_chunk = [] 

    strain_chunk = [] 

     

    for j in range(len(strain_seg)): 

        if time_seg[j] < t+821030912: 

            continue 

        if time_seg[j] > t+821030912+chunk_size: 

            break 

 

        time_chunk.append(time_seg[j]) 

        strain_chunk.append(strain_seg[j]) 

         

    Pxx, freqs = mlab.psd(strain_chunk, Fs=fs, NFFT=fs) 

     

    Axx = np.sqrt(Pxx) 

     

    ysum=0 

    ysqsum = 0 

    var_y = 0 

 

    N = len(freqs) 

    for i in range(N): 

        f = freqs[i] 

        if f < f_low: 

            continue 

        if f > f_high: 

            break 

 

        y = Axx[i] 

         



 

        ysum += y 

    avg_y = ysum/8 

 

    for i in range(N): 

        f = freqs[i] 

        if f < f_low: 

            continue 

        if f > f_high: 

            break 

 

        y = Axx[i] 

        var_y += ((avg_y-y)**2) 

    var_y = (var_y/8)**0.5  

     

    # next chunk.. 

    t = t + chunk_size 

    asds.append(avg_y)  

    times.append(t) 

    asd_var.append(var_y/3)  

 

plt.figure()  

plt.xlabel("time/s") 

plt.ylabel("average amplitude") 

plt.plot(times,asds) 

plt.errorbar(times, asds, yerr=asd_var, fmt='' )# Plot the error bar 

plt.show() 

 

 

 

 


