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Abstract
The goal of this project would he to evaluate how the changes in waveform template parameters
affect the detection efficiency of a black hole event. I recovered some of the main gravitational-
wave event detections, ran the detection process using optimal matched filtering, changed the
parameters, particularly the spin, and got slightly different waveform templates. I then drew
conclusions about the nature of approximants and template banks I used through the signal-to-
noise ratio results. Finally, I generated fake strains having the same parameters as the actual event
signal to evaluate the effect of noise in our event’s signal on change in SNR. The paper discusses
how using different waveform models gives us very different templates and how having a high SNR
value doesn't necessarily guarantee complete overlap between the template and signal. Generating
a fake strain with the same parameters as the actual strain and varving the template’s spin leads
to slightly different SNR vs. spinlz vs. spin2z surface plots. Moreover, since there is a relationship
between spinlz and spin2z, we see that the shape of the 3D plot between SNR, spinlz, and spin2z

is the same as the shape of the 2D plot between SNR and spinlz+spin2:z.




INTRODUCTION

Understanding gravitational waves signals is crucial for us as they give us a lot of infor-
mation about binary black hole systems and, in turn, even stellar evolution. It is challenging
to study these systems via any other means. A black hole’s properties are mass (how much
it bends spacetime), electric charge (positive, negative, or neutral), and spin (how much it
spins spacetime around). We can caleulate the spin by evaluating the effect of the black
hole’s angular momentum that whirls spacetime on the surrounding space and objects. It
gives us insights into how a black hole was born and how it grew.

My project deals with gaining a deeper insight into the relationship between the spin of
the two black holes in a binary black hole system and the peak in the signal-to-noise time
series for our template used in the gravitational-wave signal detection. I am dividing my
analysis into four different sections: checking how the signal-to-noise ratio changes with the
change in the spin values and the waveform model used, comparing the posterior samples
from PyCBC with my results, examining how the plots change if I generate a fake signal
(i.e., in the absence of noise) and do matched filtering with a template, and verifying my

results by checking if there is a residue when I subtract the template from the data.

Background

In 1916 gravitational waves were predicted by Albert Einstein in his general theory of
relativity. Einstein claimed and showed that gravity is not force but instead the warping
of spacetime. An accelerating object ends up distorting the curvature of spacetime around
it, and these distortions travel away from this source at the speed of light in the form of
waves. These waves are gravitational waves. This is very similar to how moving electrons
produce electromagnetic waves and vibrating air particles produce sound waves. The grav-
itational field’s changing strength is analogous to changing electric and magnetic fields (in
electromagnetic waves) and varying air pressure (in sound waves).

Learning about gravitational waves is like listening to sound through our ears. This
is entirely different from studying electromagnetic waves (similar to seeing with our eyes).
Moreover, unlike electromagnetic waves, gravitational waves travel through the Universe

unrestricted as they interact very weakly with matter. This provides us “pure” information




free from modifications. The waves provide us with invaluable information that could not
have been possible with other ways of detection. Moreover, gravitational wave detections
offer an independent way to calculate the tricky Hubble constant.

Thus, many have tried to detect gravitational waves through the past century. Joe
Weber developed the first gravitational-wave detectors (Weber bars) hy pioneering the use
of resonant bars at room temperature in the 1960s. In 1974, astronomers Joe Taylor and
Russell Hulse discovered the first binary pulsar using the 300-m radio telescope at Arecibo.
The two stars’ orbit was shrinking at the rate of 1 ecm/day. Taylor and Hulse won the 1993
Nobel Prize for showing that the loss in orbital energy due to this shrinkage is converted
to gravitational waves. This was useful in proving that Einstein was indeed right with his

predictions in the general theory of relativity. [1]

LIGO

Resonant detectors and previous methods of detection were not sensitive enough to detect
gravitational waves. Gravitational-wave interferometric detectors outperformed resonant
detectors in the 2000s as they promised better sensitivity. As gravitational waves cause a
distortion in spacetime itself, people realized that they could send a laser beam to measure
the space between two objects moving back and forth and find the time this pulse takes to

come back. This is the principle on which LIGO, Laser Interferometer Gravitational-Wave

Observatory, is based. It is the world’s largest gravitational-wave observatory and consis
of L-shaped laser interferometers 3000 km apart from one another.

Interferometers are devices that create an interference pattern. Interference is the wave
produced by the addition of amplitudes at each point of each wave that is being super-
imposed. There are two types of interference: constructive and destructive interference.
Total constructive interference occurs when the erests (maximum amplitude) and troughs
(minimum amplitude) of the waves perfectly add up. Total destructive interference happens
when every crest matches every trough of two waves that are alike. This leads to the waves
canceling each other. When the waves are not perfectly matching, partial constructive or
destructive interference is detected.

Since gravitational waves stretch and squeeze the fabric of spacetime (at a 90 degree angle

to each other by 1 part in 1019, i.e., 10,000 times smaller than a proton), they change the
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FIG. 1: Interference [2]

interferometer’s arms’ length when they pass through it. One arm gets longer while the other
gets shorter. These tiny wiggles are very hard to detect until the arms of the interferometer
are very long. Thus, LIGO arms are 4 kilometers long. Action at the interferometer begins
with an input beam. A 45 degree tilted beam splitter (a partially reflective mirror) splits
it into two separate beams. LIGO modified the simple Michelson’s design interferometer to
include” Fabry Perot cavities” to help solve the limitations caused by even the 4km long
LIGO arms by increasing the distance traveled by lasers to 1200km (with increasing the
reflections) and building the laser’s intensity. A power recycling mirror helps increase the
initial 40W laser to 750kW. Building a laser with a 750 km initial power is a practical
impossibility. This increased laser power ensures that we see sharpened interference bands,
in turn making it easier to detect.

Due to the continuous change in the length of interferometer arms when a gravitational-
wave passes through it, the distance traveled by the laser changes. The laser beam in the
shorter arm comes back before the laser in the other arm. The photodetector detects a
flicker of light as the waves are not in alignment when they interfere with at beam splitter.

This is how gravitational waves are detected.

Detection

On September 14th, 2015, LIGO physically sensed the distortions caused by the gravi-

tational waves in the fabric of spacetime. The collision between two black holes 1.3 billion
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FIG. 2: Design of the LIGO interferometers [3]

light-years away lasted 20 milliseconds. The total power released in that short period was
50 times larger than the power of all the stars in the universe combined. The gravitational
waves traveled 1.3 billion years to the Earth. The signal was recorded at both Livingston
and Hanford, with a seven milliseconds difference (as they are 3000 km apart) in the event’s
recording. This was the first time humans have ever observed a binary black hole system.
Ounly three black hole mergers were detected in the first observing run (September 2015 to
January 2016). In the second observing run (November 2016 to August 2017), eight events
were observed: seven black hole mergers and one (the first) neutron star merger. In the
third observing run (April 2019 to March 2020), a second neutron star merger and 38 BBH
mergers were detected [9] bringing the total to 50 events. The next observing run (late 2021
or early 2022) will have upgrades to increase the sensitivity by about 60 percent for Hanford

and 40 percent for Livingston [9].

Background noise

The interferometer noise floor is caused by the fundamental noise sources, quantum noise,
and thermal noise. Thermal noise is determined by permanent parameters, such as material
properties and beam size. Since the mirrors are kept at room temperature, there's some
thermal noise. Secondly, the beam is influenced by quantum fuctuations in space itself.
Quantum noise depends on the readily variable input laser power and the changeable signal

recycling mirror transmission. Laser frequency or amplitude noise, photodetector dark noise,




actuator noise, etc., are called technical noises. [4]
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FIG. 3: Principal noise terms [5]

The 40-kg mirrors (test masses) at LIGO, made of fused silica, are the most reflective
in the world as they absorb one in every 3.3 million photons to prevent heating and shape
changes. After the 4W laser’s origin from the laser diode, it repeatedly bounces around in a
crystal called the Non-Planar Ring Oscillator consisting of a crystal. It then gets amplified
to 200 W in two devices having four laser amplifier rods called the Master Oscillator Power
Amplifier and a High Powered Oscillator. Not only are LIGO’s mirrors the most reflective in
the world, it also has the 2nd largest vacuum in the world, after the Large Hadron Collider.
A combination of methods was used for this the first time, including heating the tubes
to about 160 degrees Celsius and using Turbo-pump vacuums and ion pumps for 40 days
to prevent the light scattering due to dust and air particles. This pressure in the tubes
was reduced to one-trillionth that of air pressure at sea level to ensure that we detect true
gravitational waves.

LIGO’s great sensitivity means that it is also capable of sensing nearby traflic, movement
in tectonic plates like earthquakes, and weather changes, among many other disturbances.
Using computers, the internal seismic isolation platform (active damping system) nullifies
environmental disturbances by generating counter-movements to those vibrations. LIGO’s
passive damping system uses a quad, a 4-stage pendulum, and hangs the mirrors to it using

silica thread twice the thickness of a human hair to keep it motionless. It is also why two




detectors were built quite far apart as gravitational waves, unlike local noises, which would
pass through both detectors almost simultaneously.

The sensitivity of LIGO has improved considerably since O1 and O2 [6]. There are a
few other gravitational-wave detectors around the world with different detection efficiencies.
Germany’s GEOG600 detector construction is 600 meters long. Virgo (Pisa, Italy) joined
LIGO and Germany's GEOG00 detector in 2017. Japan's KAGRA detector, the first under-
ground gravitational-wave observatory, became operational on 25 February 2020. There are
also many efforts being put into promising future projects! LIGO India project’s construc-
tion is expected to be completed in the next four to five years. The European Space Agency
(ESA) expects to place Laser Interferometer Space Antenna (LISA), a space probe, into so-
lar orbit in about ten years. ESA had launched the LISA pathfinder in 2015 to demonstrate
the key technologies and eventually make way for LISA. TianQin is another space-borne

gravitational-wave observatory project proposed by the Chinese.

Compact Binary Inspiral gravitational waves

Compact Binary Inspiral gravitational waves are one of the four main types of gravita-
tional waves. They are generated during the final life stages of binary systems, i.e. when the
two constituents of the system start to merge. The orbital speed increases and the orbital
radius decreases as they spiral closer to each other due to loss in energy in the form of
gravitational waves. The frequency and intensity of the gravitational waves increase while
the two objects (usually two black holes, two neutron stars, or a black hole and a neutron
star) rotate around each other until they merge. [7] We can calculate the spin by evaluating
the effect of the black hole’s angular momentum that whirls spacetime on the surrounding
space and objects.

In the case of a BBH system, we work with the combination of the two black holes’ spins
through something called the effective inspiral spin parameter (as it is the best-measured

spin-related parameter)

maaycos(6h) + myaicos(fy)

Xeff = my + my

where m, and m, are the masses of the two black holes (primary and secondary re-

spectively), @ is the angle between the direction of each BH's spin and the orbital angular




FIG. 4: Gravitational waves produced by two black holes orbiting each other [8]

momentum of the BBH, and a; and as each of their dimensionless spin found using

" cJ
T GM?

Here, ¢ is the speed of light, G is the gravitational constant, J and M are the angular

momentum and mass of the black hole.

The dimensionless spin magnitude can be between (0 (non-spinning, i.e.; a Schwarzschild
black hole) and 1. A spin magnitude of 1 or larger would give a naked singularity, and
this means that it hit the singularity belore crossing the event horizon. This is not possible
according to general relativity.

Spin is a vector: it has both magnitude and direction. The direction is given by the
right-hand rule. That is, take your right hand and wrap your fingers around in the direction
the black hole is spinning. The direction in which your thumb points is the direction of the
spin.

We could use either the spherical coordinate or cartesian svstem to describe the direction
the spin is pointing at. However, the Cartesian system is used to generate gravitational
waves. The origin is chosen to be at the center of mass of the binary and the z-axis pointing
in the same direction as the orbital angular momentum at some reference time. The x and
y axes are chosen to point along some arbitrary direction (some models choose the z-axis

to point to the larger object at that time, but this can vary depending on the model). The




projection of the spin vector onto the cartesian coordinate system is spinlxz, spinly, and
spinlz for the primary black hole and spin2z, spin2y, and spin2z for the secondary black
hole.

We should keep in mind that these individual spin components are not very well measured,
especially spinlz, spinly, spin2z, and spin2y. It is difficult to find the measured values of
these parameters very easily. From an astrophysics perspective, the x and y components
aren’t very useful or interesting. The researchers are most interested in the z component
and the total in-plane magnitude (i.e., /(2? + ¢?)), since those determine whether or not
the binary is precessing. A higher in-plane spin can indicate that the binary formed from
dynamical capture rather than two stars in a binary both collapsing to black holes.

The relation between the final spin and spinlxz, spinly, and spinlz is actually a little
complicated. It depends on both the component spins and masses of the binary. We cannot
do a simple mapping between the two. Scientists have come up with fitting functions through
numerical simulations of binary black hole systems. A PyCBC function makes use of one of
them: from pycbc import conversions
final_spin = conversions.final_spin_from_initial(massl, mass2, spinlx,
spinly, spinlz, spin2x, spin2y, spin2z)

The two black holes get very close before merging if their spins are large and rotate in
the same direction as their orbital rotation. They will merge at a greater separation and
give a shorter gravitational-wave signal if they spin in the opposite direction to their orbital
rotation. If the spins and orbital rotations are not aligned, we see a spin-precession, i.e., the
whole binary wobbles as the merger takes place.

Mainly, two different mechanisms have been proposed to understand how a BBH is born
and grows: assembled in the field through stellar evolution and a potential common envelope
phase, assembled dynamically, either in nuclear star clusters, globular, hierarchical triple, or
higher-order stellar systems. Spin mass distributions predicted by them are different. The
former case suggests that the black holes’ spins are preferentially aligned with the orbital
angular momentum, while the latter one indicates that the spin is isotropically distributed
with respect to the angular momentum.

There are 15 BBH parameters and 2 more parameters for Binary Neutron Systems. The
gravitational-wave signals give us information about the intrinsic and extrinsic properties

of the source. Intrinsic properties include mass, spins, tidal deformations, ete., and extrin-




sic properties include distance, inclination, coalescence time, ete. Sources of gravitational
waves are pretty simple, and thus it is easy to link our models, i.e., predictions, with the
data. Based on the data, we can make predictions using Bayesian inference and parameter

estimation.

Likelihood
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FIG. 5: Bayesian inference [9]
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FIG. 6: Gravitational wave likelihood [9)

The above-displayed equations show the Bayesian inference equation. Bayesian inference
is a method of statistical inference where Bayes’ theorem is used to change the probability
for a hypothesis as more information becomes available.

The physical parameters of the candidate event gravitational-wave signals are inferred
by computing their posterior probability density functions. The uncertainty in the source
parameters is quantified by the posterior probability distribution P(A|D), which is calculated
using Bayes’ theorem as,

P(D|#)

P(6|D) = P(H)TD]. (1)

where # is the set of model parameters, D is the data, P(#|D) is the posterior distribution,
P(8) is the prior probability distribution for the parameters, P(D|#) is the likelihood of the

data given the model parameters P(#) and P(D) is the evidence. The likelihood is calculated

10




from a coherent analysis of data from each detector. In this paper, we assume that the noise
can be treated as Gaussian and stationary.

As depicted in FIG. 4,the likelihood is the probability of the detectors measuring data
D assuming signal hypothesis M and parameters #. Thus, we see from FIG. 5 that the
likelihood is dependent on parameters, including the spin.

Phenomenological gravitational waveforms, i.e., approximants, help us computationally
predict details about data D given the parameters #. To detect binaries, we use various
waveform models, each with different properties, parameter values, and modeling techniques.
These signal models determine the likelihood function. Calculating posterior probability for
the fifteen parameters would make us compute 10'5 likelihood evaluations. All of these
simulations require a lot of computational power and time.

The template bank does not have to focus on the extrinsic parameters as much as we
have the information about the sky location. Since waveforms are considerably affected by
the mass terms, we only generated templates in the 2-D parameter space in Ol. However,
as the detectors became maore sensitive, members of LIGO discovered that template banks
designed to cover the Binary Neutron Star systems range lose roughly 6% sensitivity by not
accounting for spins [3]. Thus to increase sensitivity, other parameters like a black hole’s
spin components in the z-direction were taken into account.

Scientists identify candidates using two methods, the first one being to search for
minimally-modeled sources. The second method searches for similar signals from a bank
of template waveforms [10] which are modeled based on general relativity [11]. The coa-
lescence of binary systems is usually explained in three phases: the inspiral, the merger,
and the ring-down. Analytic description of the inspiral phase can be done through the
Post-Newtonian expansion. The ring-down is also described by an analytical model [12], as
it describes the damped oscillations in the binary coalescence as a superposition of black-
hole quasi-normal modes, i.e., modes through which a disturbed object’s or field’'s energy
is dissipated. The merger phase is non-perturbative and is described instead by numerical
simulations. Numerical relativity simulations are used to generate reference templates. This
is done using intrinsic parameters that are determined using the Bayesian parameter esti-
mation studies. Accurate analytic solutions of Einstein’s equations are extremely hard to
obtain. Thus, we use approximations instead of running programs on supercomputers for

days. Data-analysis-ready models are based on families of waveforms like the Taylor, the
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effective-one-body, and the Phenom family of waveforms.
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FIG. 7: Reconstructed gravitational-wave strain vs the waveform computed from general relativ-

ity. [13]
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methods. [13] Image: UMD /AEL

I chose six events for this project: GW150914, GW151226, GW190814,
GW190514_065416, GW190521, and GW190517_055101. These six events are quite spe-
cial and unique.

GW150914 was the first event detected by LIGO on 14 September 2015, at 5:51 a.m.
Eastern Daylight Time (09:51 UTC).

GWI151226 was the second event detected by LIGO. It was determined that one of the

12




black holes was spinning at about 20% of the maximum spin rate allowed by general rela-
tivity. The final black hole resulting from the merger was spinning at 70% of its maximum
possible value. [14]

GW190814’s black holes have a huge mass difference: a 23 M, black hole and a 2.6 M,
compact object, making the smaller one either the lightest black hole or heaviest neutron
star observed in a binary. However, comparisons with the maximum neutron star (NS) mass
predictions using the NS equation of state and electromagnetic observations suggest that
the 2.6 M., compact object is too heavy to be an NS. Also, GW190814’s dimensionless spin
magnitude is constrained to lesser than or equal to 0.07. [15]

GWI190514 065416 is a BBH with the smallest effective aligned spin, and
GW190517_.055101 is a BBH with the largest effective aligned spin of all O3a events. [16]

GWI190521, detected on 2 September 2020, is the heaviest gravitational-wave binary
observed ever. The merger resulted in the formation of a black hole of 142 M. This is the

first clear detection of an intermediate-mass black hole. [16]

METHOD

The GW Open Data Workshop No. 4 conducted by LIGO has a series of lectures,
tutorials, and quizzes on how LIGO analyzes its data. Its tutorials (on Google Colab)
enable us to edit the code. Information about all of the gravitational-wave mergers can be
accessed through the pycbc.catalog package. I have included all of the code used in this
project in a google colab notebook. [17]

PyCBC [18] is an open-source software written in Python and plays a very integral role
in data analysis. For instance, it contains algorithms for Fast Fourier Transform, matched
filtering, gravitational waveform generation. It has been used since the first direct event
detection, i.e., the detection of GW150914 in 2015.

Multiple data conditioning steps are used before analyzing the time-domain data to reduce
poor data quality. Here we have assumed that there are no data gaps in our merger signal
data. Data gaps are filled with NaNs. “Not a Number” values, in DataFrame and NumPy
arrays, represent the absence of a value. After getting the data, we remove the low-frequency
content and reduce the sample rate of the data. This is referred to as the preconditioning of

data. We notice that there are spikes in the data caused due to this step which is due to the
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discontinuity in the data and filter wrap around. We can solve this by trimming the ends
of the data. We then want to weigh the frequency components by the noise amplitude by
calculating the Power Spectral Density. PSD is the measure of signal’s power content versus
frequency. It shows at which frequencies energy is strong and at which frequencies energy
is weak. Thus, we take the time series equivalent of the multiplicative inverse of PSD and
filter the data with it.

The waveform can be generated as a time series using get_td_waveform(). In this
project, I have decided to use three very different approximants: IMRPhenomXPHM, Spin-
TaylorT5h, and SEOBNRv4_opt. SEOBNRv4 opt models the gravitational waveform of in-
spiraling and merging black holes and includes the ability for each black hole to spin in
the same direction as the orbit. Thus, we can only change spinlz and spin2z parameters.
On the other hand, IMRPhenomXPHM, a phenomenological model for gravitational waves
from precessing BBH systems, also deals with the dynamics of the in-plane components
of the spins. The P in IMRPhenomXPHM stands for precessing. IMRPhenomXPHM is
better for the frequency domain, while SEOBNRv4_opt is better for the time domain. IM-
RPhenomPv2 and SEOBNRvAPHM are some of the other approximants that also make use
of the x and y spin components. The waveform section on the PyCBC website gives the
list of approximants that are currently available, discusses plotting time-domain waveforms,
and calculating the match between waveforms [19]. IMRPhenomXPHM [20] was presented
as a model in May 2021. SEOBNRv4_opt [21] was discussed as the optimized version of
SEOBNRwv4 in 2016. SpinTaylorT5 [22] is almost 10 years old.

These waveforms models are very different than each other. FIG.[9] shows how SpinTay-
lorT5, SEOBNRv4_opt, IMRPhenomPv2, and IMRPhenomXPBM compare when superim-
posed on one another given fixed parameter values.

We then shift the waveform by the cyclic\_time\_shift method to follow the conven-
tion of making sure that the merger is in the first part of the data. Next comes the matched
filtering technique, which relies on a model of the signal being dependent on the source
physical parameters. To find out the strength of the signal in the data that matches the
template in the data, we compute the SNR (signal-to-noise ratio). If the signal aligns with
our template, we will get a large value when integrated over. The value of the SNR is pro-
portional to the amplitude of the signal buried in the noise. I applied the PyCBC matched

filtering algorithm using the matched_filter method. Before calculating the SNR, we re-
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FIG. 9: Here, spinlz=0.199, spin2z=0.999. SpinTaylorT5 is colored blue, IMRPhenomPv2 orange,
IMRPhenomXPHM green, and SEOBNRv4 _opt red. [3]

move 4 seconds at the beginning and end for the PSD filtering and four more seconds at the
beginning to take care of the corruption caused by PSD and template filters. We take the
ahsolute value of SNR as the matched filter function returns a complex SNR. While the real
part corresponds to the SNR we get by filtering the template with the data, the imaginary

part corresponds to the template 90 degrees out of phase.

SNR’s change with spin values and the waveform model used

After preconditioning the data, applying a filter to the boundaries, calculating the Power
Spectral Density, I varied both the spinlz and spin2z by 0.1 (whose values range from -1 to
1) and used 3D Plotting in Matplotlib for Python to show their relationship to SNR, after
calenlating the signal-to-noise time series for our template. Thus, for each of the six events,
the two detectors, and three approximants, I have 441 values for each of the three: spinlz,
spin2z, and SNR. Thus, in total, I generated 36 surface plots and found the peak SNR value
and the corresponding spinlz and spin2z values. I have made a table to summarize my
results for each of the events for this paper. 1 also downloaded the posterior files for these
events to verify my values. I have included their values in the table for comparison. I have
also included all of the surface plots and the values at .

GWOSC has only released the spin magnitude and polar angle for some events. Thus to
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find the individual spin parameters, I downloaded the posterior files for the various events
from the Python Software for Gravitational-wave Astronomy’s 3-oge GitHub repository.
It has the posterior files for 58 events. Those files are hdf files. I downloaded the files
and opened them in Google Colab. PyCBC has pre-written functions to read the hdf file
and abstract the data. In them, all three components of the spin vectors are described in
spherical coordinates, spinl_a, spinl_azimuthal, and spinl_polar. To convert into cartesian,
I used the spherical to cartesian transformations. We can use the fact that spinlz = spinl_a
- cos(spinl_polar). So, for example, to get the components for GW 150914, T downloaded its
hdf file and imported the required modules. We get numpy arrays having posterior samples
of each parameter. 1 then used numpy.median("parameter name") to get the measured
value.

I also wanted to get the SNR value from the hdf file. We want a function that returns
SNR computed from the given log-likelihood ratio(s). Fortunately we see that we can use
snr=pycbc.conversions.snr\_from\_loglr(loglr) to convert loglr to SNR. Thus, we
have a parameter space where a particular SNR corresponds to specific values of spinlz,

spinly, spinlz, spin2z, spin2y, and spin2z.

Checking for residue after subtracting template from data

We have found the peak in the SNR value in the previous section. But we want to know
if the peak in the signal is the SNR itself. We want to check if our waveform template is
efficient, i.e., aligns with the signal precisely. Having found the peak in the SNR value for
various events, we can now subtract our proposed template from the data to check the power
residue. Since we know where the SNR peak is, we can easily align our proposed signal with
the data. We have to concentrate on the important frequency range and compare the data
and signal in the same manner. We will whiten both the template and the data, and then
bandpass, i.e., letting only the signals between two specific frequencies pass, both the data
and template between 30-300 Hz. Whitening the data is dividing it by the noise amplitude
spectrum in the Fourier domain. Noise fluctuations are much more significant at low and
high frequencies and near spectral lines. Bandpassing gets rid of such noise fluctuations.
After following the above steps, we get the data and template in the proper alignment. Since

they are now aligned, we subtract one from the other and check if there is a residue in the
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time-frequency plot. Having no residue means that our template matches the signal entirely.

Having some residue gives us an estimate of how much the template matched the signal.

Generating a fake strain

We use the PSD estimate from one of the events’ data so that it doesn’t turn out to be
too unrealistic. For instance, I got the GW150914 data from the Hanford detector, removed
the low-frequency content, downsampled the data to 2048 Hz, and removed 2 seconds of
data from both the beginning and end. We then estimate the power spectral density the
same way as before.

We continue to reload the strain to use its delta_t and length to generate our fake strain.
We then make a waveform with known spins to compare against. In the project, I generated
three strains with different spin parameters. This is our new “strain,” so we set the delta_t
and resize the length to that of the original data strain. Our “strain” is now the plus polar-
isation of that waveform. The actual strain in the detector would be a linear combination
of the polarisations and the detector response function (DRF) for these. We treat it like
the original strain and continue with the same steps as before. Remove the low-frequency
content and downsample the data to 2048Hz. We again remove 2 seconds of data from both
the beginning and end. We make a template with different spins and produce the SNR and
resize the vector to match our data. We remove time corrupted by the template filter and
the PSD filter.

The SNR we find is quite high, and that is because the template used as the strain is
generated with some random amplitude. As the SNR depends on the amplitude, we get a
large value here. We should keep in mind that the amplitude arriving at the detector would
be much smaller. If we considered the large distance to the source, the amplitude would
have been very different. But the absolute value is irrelevant as we want to check the relative

influence of changing the spin parameters on the SNR.

RESULTS

The following figures show the relationship between the SNR, spinlz, and spin2z values

and the waveform model used. | have included all of the 36 surface plots, the overlap between
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the template and data, visualization of the residue. and the fake strain examples with other

events in another document due to the lack of space here [23].
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FIG. 10: GW150914’s data from LIGO Hanford. IMRPhenomXPHM approximant used. The
middle plot shows that the nature of the plot between spinlz+spin2z and SNR is similar to the

3D plot.

-20 -1§ -10 -0 @6 0% 10 15 20
winlz+apinlz

FIG. 11: GW190521's data from LIGO Hanford. IMRPhenomXPHM approximant used. Relative

to the other plots, the curve looks flat here.

65 70
60 (11
SR
55 o SR
50
as 53
50
1.0
L0 05 4o 0500903 10 gs o050
winlz “05-10 10 spinlt q;m‘}f -05-10 1005 gin?

FIG. 12: GW190521's data from LIGO Hanford. SpinTaylorT5 (left) and SEOBNRv4 opt (right)
approximants used respectively. We see a stark contrast between the plots for the same event due

to the different approximants used.
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FIG. 13: GW151226's data from LIGO Livingston. SEOBNRv4 _opt approximant used here. This
plot looks quite unique in comparison to the other plots 1 generated as it does not have wavy

features or valleys and spikes in the plot.
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FIG. 14: SEOBNRv4_opt approximant used. Left: GW190814 from LIGO Hanford. Right:

GW151226 from LIGO Hanford. These plots also have unique shapes found in no other plots.
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FIG. 15: SpinTaylor T5 approximant used. Left: GW190514_065416 from LIGO Livingston. Right
GW190517.055101 from LIGO Livingston.




We already have the released spin component and SNR values for each of the events from
the hdf file. From the plots showing the posterior samples below, we see that except for
the graph between spinlz and spin2z, all of the other graphs have the points taking the
shape of a circle. This means that we cannot find out their values as each could be the spin
component of the black hole, i.e., their distribution appears to be equal. All of the points
in the graph between spinlz and spin2z populate the region close to the diagonal. The
black hole having the higher mass in a BBH has a larger angular momentum than the other.
Previously we have seen that the spin is directly proportional to the angular momentum.
Since the angular momentum is conserved, as spinlz increases, spin2z decreases, and vice

versa.

Posterior samples: GW150914
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FIG. 16: The plots are from the posterior analysis values. It is interesting to note that while there
is a clear diagonal relationship between spinlz and spin2z in GW150914, it is not quite evident

with GW190514_065416.
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Checking for residue after subtracting template from data

As discussed in the Methods section, checking if there is a residue gives us an estimate
of how much the template matched the signal. T plugged in the spinlz and spin2z values
corresponding to the peak SNR value for each of the approximants and events. The color
scale in the spectrogram of the data from Hanford in FIG. 17. shows a measure of the power
present in the data at a given frequency and time. We can see the "chirp” signal if it’s a
BBH, as this type of signal is characteristic of compact binary inspirals.

But GW151226, GW190814, and GW190514_065416 have very faint colors. I was not
able to accurately identify if there was a residue in the time-frequency plot. Thus, except
for those events, I added another column in the tables describing the overlap between the
template and the strain and the amount of residue left after subtraction. I have included

the tables for GW151226, GW190814, and GW190514_065416 at the end of this paper.
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FIG. 17: SEOBNRv4 opt. There is almost a complete overlap of the template and data and there

is no residue left.
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FIG. 18: GW151226 data from LIGO Livingston. The peak SNR value is 171.98. IMRPhenomX-
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PHM was used here. The template does not overlap much with the strain.

GW150914 |Approximant used |Spin1z Spin2z  |Peakin Subtracting the Signal
the SNR  |from the Data
Hanford |IMRPhenomXPHM 03 -09 1962 Perfect overlap. No
residue after subtraction.
SpinTaylorTS 0.3 04 1563 Perfect overlap only at
two peaks.
Faint residue.
SEOBNRv4_opt -0.6 0.1 19.66 Perfect overlap. No
residue after subtraction.
Livingston |IMRPhenomXPHM 03 07 1376 Perfect overlap. No
residue after subtraction.
SpinTaylorT5 0.3 05 404 99 Almost no overlap
Residue is large.
SEOBMNRv4_opt 05 0.3 26.07 Perfect overlap. No
residue after subtraction.
Posterior |IMRPhenomXPHIM -0.008 -0.025 2382 Perfect overlap. Mo
residue after subtraction.
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GW180517 |Approximant used |Spiniz Spin2z |Peakin Subtracting the Signal
_055101 the SNR  |from the Data
Hanford IMRPhenomXPHM 01 10 10.76 Almost perfect overlap
No residue.
SpinTaylorTa 08 06 6.49 Perfect overlap. No
residue.
SECBNRv4_opt 0.1 09 596 Partial overlap. Faint
residue.
Livingston |IMRPhenomXPHM -08 -0.9 6.68 MNo overlap at all. There
is residue.
SpinTaylorTS 01 10 6.06 Partial overlap. Faint
residue.
SEOBNRv4_opt 05 10 6.74 Perfect overlap. No
residue.
Posterior |IMRPhenomXPHM 0709 0203 11.36 No significant overlap
There is residue
GW190521 |Approximantused |Spiniz |Spin2z |Peakin |Subtracting the Signal
the SNR |from the Data
Hanford IMRPhenomXPHM -1 -0.9 7.00 Perfect overlap. No
residue.
SpinTaylorT5 0.69 -0.30 6.94 Perfect overlap. No
residue.
SEOBNRv4_opt -1 -1 75k | Partial overlap. Faint
residue.
Livingston |IMRPhenomXPHM -1 -1 966 Partial overlap. Faint
residue
SpinTaylorTs -050 -0.70 842 Partial overlap. Faint
residue.
SEOBNRv4_opt -1 -1 9438 Perfect overlap. No
residue.
Posterior |IMRPhenomXPHM -0.416 0.063 15.16 Almost perfect overlap.

Faint residue.




We have a mix of results in the last column. While visualizing the overlap between the
data and template generated from many of these approximants, we see that some of their
peaks don’t match. This shows that having a high SNR does not guarantee the accuracy of
the corresponding spinlz and spin2z values. We also see no clear pattern to find out what
the spinlz and spin2z values will be for each waveform model. We have seen from earlier
surface plots that the SNR values are almost the same for many of the spinlz and spin2z
values. We also see that the SNR values are abnormally high in some cases. At the same
time, some of the spinlz and spin2z values leave no residue after subtraction.

LIGO has mentioned that they use special-purpose analysis software packages to finalize
the parameter values in many of the tutorial pages. They obtain their best-fit templates
by selecting a maximum likelihood waveform. The tutorials are not an optimal way of
calculating the SNR or finding the residual signal. But they give us an idea of how the SNR
changes relative to the change in spin parameters.

Scientists usually do not get a single number for any of the parameters, but instead a

probability distribution for it as shown in FIG. 19.
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FIG. 19: The colour represents the density of the distribution, where the highest density means
the highest probabilities for those parameters. The right semicircle corresponds to the less massive
black hole, while the left half corresponds to the heavier black hole. The pixel's radial distance
from the circle’s center corresponds to the spin magnitude. The pixel’s angle from the vertical axis

shows the tilt angle between each spin and the Newtonian orbital angular momentum.[11]
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Based on the SNR values I got for each detector and waveform model, I calculated the
Network SNR. Network SNR is given by [24]
(SNR(Network))?=(SNR (H1))*+(SNR (L1))?

IMRPhenomX | SpinTaylorT5 | SEOBNRv4_opt Published Posterior
PHM Network  SNR | samples
values (PyCBC
Search Pipeline)
GW150914 2397 40529 3265 236 2382
GW151226 172.90 989 39.70 131 13.24
GW190814 18.52 19.34 158.05 22.2 (GstLAL 2512
Search Pipeline)
GW190514_065416 | 7.48 832 768 83 8.07
GW190517_0556101 | 12.66 a88 9.00 102 11.36
GW190521 11.93 10.91 1191 142 15.16
(IMRPhenomPv3
HM)

FIG. 20: Network SNR

We see that we get similar Network SNR values mostly for IMRPhenomXPHM. It also
looks like SpinTaylorT5’s values are a better match than SEOBNRv4_opt’s values.

Generating a fake strain

We have discussed generating a fake strain in the Methods sections. I wanted to check
how the fake strain’s surface plots compared to the actual strain’s surface plots. How does
the absence of noise affect the curve we get in the plot? How is the influence of changing
the spin parameters on the SNR different here? I also wanted to check if the change in
spinlz+spin2z values had more effects than just the change in the SNR peak values. Thus,
I again calculated the change in SNR by varying the spin components for the templates by
0.1 in a nested loop. By following the steps mentioned previously, I get the peak SNR for
different values of the spin parameters. Here, I only list three cases where I change the spin
values of the fake strain: the posterior samples of GW150914, spinlz=0 and spin2z=-0.8,
and spinlz=0.2 and spin2z=0.3. I chose the IMRPhenomXPHM waveform model as it is a

very recent model and is perhaps better at generating a strain similar to the actual event’s.
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FIG. 21: Approximant IMRPhenom XPHM with spinlz=0 and spin2z=-0.8 used as strain
plates used: IMRPhenomXPHM.
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FIG. 22: Approximant IMRPhenomXPHM with spinlz=0.2 and spin2z=0.3 used as strain.

plates used: IMRPhenomXPHM. SNR peak shifts here based on the spinlz-+spin2z value.
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FIG. 23: Left: Approximant IMRPhenomXPHM with spinlz=0.23, spin2x=0.49, spinly=-0.28,

spin2y=0.08, spinlz=-0.22, and spin2z=0.16 used as strain. Templates used: IMRPhenomXPHM.

Right: GW150914’s data from LIGO Hanford. IMRPhenomXPHM approximant used.
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CONCLUSION

The increasing pace with which gravitational waves are being detected makes us better
equipped to understand the nature of black holes. Out of the many parameters, I chose the
spin. We observe that there is a relationship between the spinlz and spin2z values. Instead
of a 3D plot, we can capture the same type of information in a 2D plot between SNR
and spinlz—+spin2z. In the process, we also saw how different approximants, i.e., waveform
templates, give different peaks and surface plots for the same parameter values. When
the spinlz+spin2z value is changed, keeping the others constant, we find that the peak is
shifted. To find the best template match, T subtracted the template from each event’s data
to check if there is a power residue. For some of the spinlz and spin2z values, I still got
a residue. We also see that IMRPhenomXPBM provides a relatively better match for the

Network SNR values.

SUMMARY

We saw that changing the spin parameters, specifically its z component, also changes
the SNR. The SNR changes differently depending on the approximant and event for every
small change in the spin values. T also downloaded the posterior samples data files in hdf
file format and analyzed them to crosscheck my values. The patterns we observe in the
posterior distribution analysis published by PyCBC can also be observed in my data as [

change the value of spinlz+spin2z. We also saw that

FURTHER RESEARCH

The same type of analysis can be done for other events. This would enable us to see more
patterns in the relationship between spinlz. spin2z, and the SNR values. A more detailed
analysis can also compare how a fake strain with no noise would compare to an actual event’s

strain when filtered with the same template.
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GW151226 Approximant used Spiniz Spin2z Peak in the SNR

Hanford IMRPhenomXPHM -10 -01 13.46
SpinTaylorTs 0.3 09 7.58
SEOBNRv4_opt 04 -04 39.24

Livingston IMRPhenomXPHM 02 10 172.38
SpinTaylorTs 02 1.0 6.35
SEOBNRv4_opt 08 03 6.09

Posterior IMRPhenomXPHM 0.291 0073 1324

GW190814 Approximant used Spiniz Spin2z Peak in the SNR

Hanford IMRPhenomxXPHM -1.0 -09 16.28
SpinTaylorTs 04 09 8.85
SEOBNRv4_opt 02 03 19.00

Livingston IMRPhenomXPHM -1.0 -0.1 8.82
SpinTaylorTs 0.3 06 172
SEOBNRv4_opt 04 07 156.91

Posterior IMRPhenomxXPHM -0012 0033 2512
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GW190514_0 | Approximant used Spin1z Spin2z Peak in the SNR

65416

Hanford IMRPhenomXPHM 10 01 544
SpinTaylorTs 0.7 1.0 5.85
SEOBNRv4_opt 09 0.1 5.1

Livingston IMRPhenomXPHM 0.7 09 313
SpinTaylorTs 0.7 09 592
SEOBNRv4_opt 10 03 514

Posterior IMRPhenomXPHM -0.171 -0.095 8.07
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