Unix and Fortran for Physics and Astronomy Exercise 13

Heapsort

In this exercise you will use a subroutine which uses the “heapsort” algorithm
to sort a list of numbers read from a file, and you will learn how to assemble
programs from pieces compiled from separate files. You will also get an intro-
duction to two useful programming tools, the Revision Control System (RCS)
and the make program.

1. Problem

The “heapsort” is one of the best ways to sort data, because the time it takes to sort a
list of N numbers grows only like O(N logy(NN)), not O(N?), and it is relatively easy to
program (although it is more complicated than the bubble sort or the selection sort).

Instead of writing a heapsort routine, you will use one someone else has written. You
will find a description of the heapsort algorithm as well as a “pseudo-code” version of a sub-
routine to sort an array of numbers using that algorithm in the well known book Numerical
Recipes (The Art of Scientific Computing) by W.H. Press, B.P. Flannery, S.A. Teukolsky
and W.T. Vetterling (Cambridge University Press, 1986). You should type the subroutine
into the file heapsort.f. It is not very long, but it is written in a style that is not quite
official Fortran, so you will have to do some conversion as you type, such as providing line
numbers for DO loops and the like.

You should then write a main program (or modify a copy of Exercise 12) which behaves
exactly like Exercise 12, except that it calls the subroutine HEAPSORT instead of the routine
SORTEM. The first argument to HEAPSORT will still be the number of items to sort, and the
second argument will still be the name of the array containing the REAL data to sort.

Your program should not include the HEAPSORT routine in the same file as your main
program. Instead, compile heapsort.f by itself with the command

% f77 -c heapsort.f
to produce the file heapsort.o. (The -c flag means “compile only”, and the “%” represents
the Unix prompt.) Then do the same thing to your own program, which does not have

heapsort in it. That is, compile it with “f77 -c¢”, as in:

% £77 -c mavassaril3.f

Unix and Fortran for Physics and Astronomy Exercise 13

You will then have two separate files with names which both end in “.0”. These are

“object” files, and they contain the translation of your Fortran program into machine code,
but they still must be “linked” (or “loaded”) together to form an executable file. You can
link (or “load”) these separate modules to create the executable file with a command like
the following:

% f77 mavassarl3.o heapsort.o -o mavassarl3

The Fortran compiler will recognize that these files have already been compiled and will
simply load them to create the executable file.

2. Input/Output

Just as in Exercises 11 and 12 you should read the numbers to be sorted from a file. Asin
Exercise 12, the numbers can be assumed to be real, and the sorted list should be written
to an output file, not to the terminal. The output file should have the same base name
as the assignment, using your userid and the exercise number, and the filename extension
.rpt (Example: mavassari3.rpt). You should print a comment to the user telling them
where the sorted data have been put, and the number of items that have been sorted.

3. Testing

To test and demonstrate your program run it using the 2000 real numbers in the file
R2000.d in my directory “myers/fortran with the Unix time command and note the
time taken. Run your selection sort program (Exercise 12) on the same data file and note
the time taken. Which one is faster?

If you like, you can also try timing your bubble sort program (Exercise 11) using the
same data file. This is easily done using the Unix “input redirection” operator “<” to tell
the program to read input from a file not the terminal. The command would be something
like:

% mavassarll < R2000.d
Which of the three algorithms is the slowest? Which is the fastest?
To turn in your assignment copy only your main program file to my inbox directory.
I already have my own copy of HEAPSORT, which I will use to test your programs. Your
sample run should show your run of both the heapsort and selection sort programs, with

the times taken by each.

If you copy your program from Exercise 12 be sure to remove SORTEM completely!

Unix and Fortran for Physics and Astronomy Exercise 13

4. Using RCS

To gain experience with using RCS (the Revision Control System) you should also include
at the top of your program (after your name and date and the like) an RCS comment line
like the following:

C @(@#) $Revision: 1.3 $: $Date: 2003/03/15 12:35 $: SPAuthor: mavassar [|
$

To get the actual date, time and an updated version number into this comment line you
should “check in” the file to RCS, using the ci command, like so:

% ci mavassarl3.f

Once you have done this you will see that your file mavassar13.f is no longer in the current
directory, but that a new file, called mavassar13.f,v now exists. This is the “version”
file, which contains the latest version of the file and revision history. You can retrieve an
up-to-date copy of your file from the version file by “checking out” the file from RCS with
the co command, like so:

% co mavassarl3.f

Your “working file” will reappear in the directory, and the version file will also be there. If
you look at your working file now you will see that the revision number, date and author
have all been updated.

To view the revision log for the file give the command
% rlog mavassarl3.f

From now on, if you make changes to your program, you can check them into RCS using
ci, and the changes will be stored in the version file. You can then check out either the
latest version or any previous version. You can also use the rcsdiff command to look at
the differences between different versions of a file.

5. The make program

Another useful programming tool in Unix is the make program, a utility which manages
compilation and can assemble programs from a number of different files. All you need
to do is create a file containing simple instructions telling make what to make (called a
“target”), what to make it from (called the “dependencies”), and how to make it (called a
“rule”).

The best way to learn to use make is by an example. If for this exercise your “target”

is the program mavassari13, which “depends” upon both mavassar13.o and heapsort.o,
then the rule for compiling them is to simply give the {77 command with both file names.

-3 -

Unix and Fortran for Physics and Astronomy Exercise 13

To have make do this for you you create a file called Makefile in the current directory
containing the following lines:

mavassarl3: mavassarl3.o heapsort.o
(tab) f77 mavassar13.o heapsort.o -o mavassaril3

On the first line, the target mavassari13 is followed by a colon, and then the list of files
which are needed to build the target. On the next line, which must begin with a (tab),
is the rule for making the target. To have make build the target you then simply give the
make command and name the target, like so:

% make mavassarl3

The make program knows that “.o” files are to be made from “.£” files and will compile
them with £77 -c (or you can specify your own rule). The make program will also look
at the date and time on each file to see which file is out of date, and will only re-compile
those parts which have changed. Thus if you change your program but don’t change the
heapsort routine, make will only re-compile your program and then invoke the rule to build
the executable. Try it. You can have many rules for many targets in a Makefile.

6. Reading

You should read at least the background material describing the heapsort algorithm in
Numerical Recipes (The Art of Scientific Computing) by W.H. Press, et al.. This book
also contains a collection of other useful subroutines for a wide variety of scientific and
engineering applications.

You can learn more about sorting in general from Sorting and Searching (Volume 3 of
The Art of Computer Programming), by Donald Knuth (Addison Wesley, Inc., 1973).

For more information on RCS and make see the man pages for rcs, ci, co, rlog,
rcsdiff, and make, and the chapters on RCS and make in Unix for FORTRAN Program-
mers, by Mike Loukides (O’Reilly & Associates, Sebastopol, Calif., 1990). A brief tutorial
is given in the handout “A Quick Introduction to RCS (the Revision Control System)”
distributed with this exercise.

For more about Unix input/output redirection you can read the on-line manual page
for tcsh by giving the command ‘man tcsh¢, or see any introductory book on Unix.

